Disruption of transforming growth factor beta signaling by a mutation that prevents transphosphorylation within the receptor complex.
نویسندگان
چکیده
T beta R-II (transforming growth factor beta [TGF-beta] type II receptor) is a transmembrane serine/threonine kinase that acts as the primary TGF-beta receptor. Ligand binding to T beta R-II leads to the recruitment and phosphorylation of T beta R-I, a distantly related transmembrane kinase that acts as a downstream signaling component. T beta R-I phosphorylation by T beta R-II is shown here to be essential for signaling. A mutant T beta R-II that binds ligand but lacks signaling activity was identified. This mutant was identified by screening with a TGF-beta-inducible vector a series of mink lung epithelial cell clones that have normal TGF-beta binding activity but have lost antiproliferative and transcriptional responses to TGF-beta. When transiently cotransfected with T beta R-II, one of these cell lines, S-21, recovered TGF-beta responsiveness. cDNA cloning and sequencing of T beta R-II from S-21 cells revealed a point mutation that changes proline 525 to leucine in kinase subdomain XI. A recombinant receptor containing this mutation, T beta R-II(P525L), is similar to wild-type T beta R-II in its abilities to bind ligand, support ligand binding to T beta R-I, and form a complex with T beta R-I in vivo. T beta R-II(P525L) has autophosphorylating activity in vitro and in vivo; however, unlike the wild-type receptor, it fails to phosphorylate an associated T beta R-I. These results suggest that T beta R-II(P525L) is a catalytically active receptor that cannot recognize T beta R-I as a substrate. The close link between T beta R-I transphosphorylation and signaling activity argues that transphosphorylation is essential for signal propagation via T beta R-I.
منابع مشابه
Directed Blocking of TGF-β Receptor I Binding Site Using Tailored Peptide Segments to Inhibit its Signaling Pathway
Background: TGF-β isoforms play crucial roles in diverse cellular processes. Therefore, targeting and inhibiting TGF-β signaling pathway provides a potential therapeutic opportunity. TGF-β isoforms bind and bring the receptors (TβRII and TβRI) together to form a signaling complex in an ordered manner. Objectives: Herein, an antagonistic variant of TGF-β (AnTβ)...
متن کاملDisruption of Transforming Growth Factor β Signaling by a Novel Ligand-dependent Mechanism
Transforming growth factor (TGF)-beta is the prototype in a family of secreted proteins that act in autocrine and paracrine pathways to regulate cell development and function. Normal cells typically coexpress TGF-beta receptors and one or more isoforms of TGF-beta, thus the synthesis and secretion of TGF-beta as an inactive latent complex is considered an essential step in regula-ting the activ...
متن کاملMissense mutations of the transforming growth factor beta type II receptor in human head and neck squamous carcinoma cells.
In this study, we report the occurrence of missense mutations of the transforming growth factor beta (TGF beta) type II receptor gene in two human squamous head and neck carcinoma cell lines. Both mutations are G:C-->C:G transversions, which result in the replacement of a glutamic acid by a glutamine, and of an arginine by a proline residue, respectively. Moreover, both are located at highly co...
متن کاملRecombinant Expression of the Non-glycosylated Extracellular Domain of Human Transforming Growth Factorβ Type II Receptor Using the Baculovirus Expression System in Sf21 Insect Cells
Transforming growth factor beta (TGFβ1, β2, and β3) are 25 kDa disulfide-linked homodimers that regulate many aspects of cellular functions, consist of proliferation, differentiation, adhesion and extracellular matrix formation. TGFβs mediate their biological activities by binding of growth factor ligand to two related, functionally distinct, single-pass transmembrane receptor kinases, known as...
متن کاملInduced disruption of the transforming growth factor beta type II receptor gene in mice causes a lethal inflammatory disorder that is transplantable.
Recent studies in mouse models deficient in transforming growth factor beta (TGF-beta) signaling have documented TGF-beta as one of the major regulators of immune function. TGF-beta1-null animals demonstrated massive autoimmune inflammation affecting multiple organs, but attempts to transfer the phenotype to normal animals by bone marrow transplantation only resulted in minor inflammatory lesio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 15 3 شماره
صفحات -
تاریخ انتشار 1995